Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(5,6-Dibromo-7-methyl-3*H*-imidazo-[4,5-*b*]pyridin-2-yl)phenol

Haixia Wang

Department of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China Correspondence e-mail: xxhxwang@126.com

Received 25 October 2010; accepted 4 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.043; wR factor = 0.138; data-to-parameter ratio = 12.9.

In the title compound, $C_{13}H_9Br_2N_3O$, the molecular skeleton, influenced by an intramolecular $O-H\cdots N$ hydrogen bond, is roughly planar, with a mean deviation of 0.033 Å. In the crystal, intermolecular $N-H\cdots O$ hydrogen bonds link the molecules into chains propagating in [100]. Weak intermolecular $\pi-\pi$ interactions [centroid–centroid distances = 3.760 (3) and 3.723 (3) Å] further consolidate the packing.

Related literature

For background to the use of imidazole and its derivatives in transition metal complexes, see: Huang *et al.* (2004). For related structures, see: Eltayeb *et al.* (2009); Xiao *et al.* (2009); Elerman & Kabak (1997).

Experimental

Crystal data $C_{13}H_9Br_2N_3O$ $M_r = 383.05$

Orthorhombic, *Pbca* a = 13.181 (5) Å b = 8.494 (3) Å c = 22.692 (8) Å V = 2540.5 (16) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) T_{min} = 0.243, T_{max} = 0.310

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 173 parameters $wR(F^2) = 0.138$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ 2234 reflections $\Delta \rho_{min} = -0.88 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

 $0.31 \times 0.28 \times 0.24$ mm

11656 measured reflections

2234 independent reflections

1706 reflections with $I > 2\sigma(I)$

 $\mu = 6.38 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.041$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1A \cdots O1^{i} \\ O1 - H1 \cdots N2 \end{array}$	0.95 0.82	1.90 1.84	2.839 (6) 2.573 (6)	171 149
	. 1 . 3			

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *SHELXTL* (Sheldrick, 2008*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2784).

References

Bruker (2001). *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372-374.
- Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, 01613–01614.
- Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218–13219.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.
- Xiao, H.-Q., Zhang, M.-Z. & Wang, W. (2009). Acta Cryst. E65, o1256.

supplementary materials

Acta Cryst. (2010). E66, o3132 [doi:10.1107/81600536810045277]

2-(5,6-Dibromo-7-methyl-3H-imidazo[4,5-b]pyridin-2-yl)phenol

H. Wang

Comment

Due to excellent coordination abilities the imidazole and its derivatives have already been introduced into the transition metal complexes (Huang *et al.*, 2004). Herewith we present the title compound (I) - a new imidazole derivative.

In (I) (Fig. 1), intramolecular O—H···N hydrogen bond (Table 2) influence the molecular conformation, so all non-H atoms are nearly coplanar with the mean deviation of 0.033 Å. The dihedral angle between the 5,6-dibromo-7-methyl-3*H*-imidazo[4,5-*b*]pyridine plane and the phenol plane is 2.1 (2) °. The bond lengths and angles are normal and comparable to those observed in the reported benzimidazole compounds (Xiao *et al.*, 2009; Eltayeb *et al.*, 2009; Elerman & Kabak 1997).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into chains propagated in direction [100]. Weak intermolecular π — π interactions (Table 1) consolidate further the crystal packing.

Experimental

The title compound was synthesized by the reaction of 4-methyl-2,3-diamino-5,6-dibromopyridine and 2-hydroxybenzaldehyde with the ratio 1:1 in ethanol. After the mixture was refluxed sevral hours, the resulting clear yellow solution was allowed to evaporate slowly in air, and orange-yellow block-like crystals suitable for X-ray diffraction were obtained with a yield 47% about ten days later.

Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in *SHELXL-97* with C—H distances of 0.93 and 0.96 Å, and were refined as riding, with $U_{iso}(H) = 1.2 \cdot 1.5 U_{eq}(C)$. H atoms bonded to O and N atoms were found from difference Fourier maps with the bond lengths restrained to 0.82 and 0.96 Å, respectively, and were refined as riding, with $U_{iso}(H) = 1.5 U_{eq}(O)$ and $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and 30% probability displament ellipsoids.

2-(5,6-Dibromo-7-methyl-3H-imidazo[4,5-b]pyridin-2-yl)phenol

Crystal data C₁₃H₉Br₂N₃O

F(000) = 1488

$M_r = 383.05$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
<i>a</i> = 13.181 (5) Å
<i>b</i> = 8.494 (3) Å
<i>c</i> = 22.692 (8) Å
$V = 2540.5 (16) \text{ Å}^3$
Z = 8

D

Data collection	
Bruker APEXII CCD area-detector diffractometer	2234 independent reflections
Radiation source: fine-focus sealed tube	1706 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.041$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)	$h = -15 \rightarrow 15$
$T_{\min} = 0.243, T_{\max} = 0.310$	$k = -9 \rightarrow 10$
11656 measured reflections	$l = -24 \rightarrow 26$

 $D_{\rm x} = 2.003 {\rm Mg m}^{-3}$

Block, orange-yellow $0.31 \times 0.28 \times 0.24 \text{ mm}$

 $\theta = 2.9 - 24.6^{\circ}$ $\mu = 6.38 \text{ mm}^{-1}$ T = 293 K

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1452 reflections

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0692P)^2 + 6.558P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.88 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.27968 (6)	1.22305 (9)	0.48970 (3)	0.0618 (3)
Br2	0.51701 (6)	1.19032 (9)	0.54180 (3)	0.0669 (3)
01	0.0310 (3)	0.7707 (6)	0.73898 (19)	0.0541 (12)
H1	0.0614	0.8111	0.7113	0.081*
N1	0.3413 (3)	0.8522 (5)	0.7102 (2)	0.0380 (10)
H1A	0.4011	0.8215	0.7306	0.046*
N2	0.1806 (3)	0.8887 (5)	0.68102 (19)	0.0365 (10)
N3	0.4280 (4)	1.0090 (7)	0.6313 (2)	0.0615 (15)
C1	0.3468 (4)	0.9445 (6)	0.6601 (2)	0.0348 (12)
C2	0.2452 (4)	0.9659 (6)	0.6416 (2)	0.0350 (12)
C3	0.2226 (4)	1.0517 (7)	0.5909 (2)	0.0432 (13)
C4	0.3060 (4)	1.1146 (7)	0.5612 (2)	0.0414 (13)
C5	0.4049 (4)	1.0950 (6)	0.5811 (2)	0.0400 (13)
C6	0.1127 (5)	1.0806 (9)	0.5643 (3)	0.0680 (19)
H6A	0.0923	1.1873	0.5717	0.102*
H6B	0.0653	1.0098	0.5825	0.102*
H6C	0.1140	1.0621	0.5226	0.102*
C7	0.2410 (4)	0.8221 (6)	0.7213 (2)	0.0357 (12)
C8	0.2041 (4)	0.7275 (6)	0.7696 (2)	0.0354 (12)
C9	0.0988 (5)	0.7064 (7)	0.7768 (3)	0.0431 (13)
C10	0.0636 (5)	0.6169 (8)	0.8237 (3)	0.0578 (17)
H10	-0.0057	0.6022	0.8288	0.069*
C11	0.1315 (5)	0.5488 (8)	0.8632 (3)	0.0604 (18)
H11	0.1074	0.4895	0.8947	0.072*
C12	0.2329 (5)	0.5690 (8)	0.8558 (3)	0.0536 (16)
H12	0.2779	0.5226	0.8821	0.064*
C13	0.2693 (4)	0.6560 (7)	0.8104 (3)	0.0453 (14)
H13	0.3390	0.6686	0.8063	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0851 (6)	0.0621 (5)	0.0383 (4)	0.0019 (4)	-0.0058 (3)	0.0082 (3)
Br2	0.0640 (5)	0.0757 (5)	0.0609 (5)	-0.0265 (4)	0.0124 (3)	0.0054 (4)
01	0.029 (2)	0.079 (3)	0.054 (3)	0.0054 (19)	0.0065 (19)	0.007 (2)
N1	0.027 (2)	0.048 (3)	0.039 (3)	-0.0008 (19)	-0.0055 (19)	0.001 (2)
N2	0.028 (2)	0.045 (3)	0.037 (3)	0.0009 (18)	-0.0012 (19)	-0.002 (2)
N3	0.056 (3)	0.068 (4)	0.060 (4)	-0.006 (3)	0.003 (3)	-0.005 (3)
C1	0.029 (3)	0.043 (3)	0.033 (3)	-0.004 (2)	0.000 (2)	-0.003 (2)
C2	0.033 (3)	0.040 (3)	0.032 (3)	-0.001 (2)	0.000 (2)	-0.004 (2)
C3	0.048 (3)	0.046 (3)	0.036 (3)	0.007 (3)	-0.002 (3)	-0.005 (3)
C4	0.050 (3)	0.041 (3)	0.034 (3)	-0.002 (3)	0.000 (3)	-0.003 (2)
C5	0.045 (3)	0.040 (3)	0.036 (3)	-0.007 (2)	0.006 (3)	0.000(2)
C6	0.071 (5)	0.076 (5)	0.057 (4)	0.012 (4)	0.011 (4)	0.010 (4)

supplementary materials

C7	0.031 (3)	0.040 (3)	0.036 (3)		-0.001(2)	0.004 (2)	-0.0	07 (2)
C8	0.038 (3)	0.034 (3)	0.034 (3)		-0.002 (2)	0.004 (2)	-0.0	04 (2)
С9	0.044 (3)	0.044 (3)	0.041 (3)		0.001 (3)	0.009 (3)	-0.0	06 (3)
C10	0.054 (4)	0.061 (4)	0.059 (4)		-0.008 (3)	0.023 (3)	-0.0	01 (3)
C11	0.082 (5)	0.051 (4)	0.048 (4)		-0.004 (3)	0.018 (3)	0.00	6 (3)
C12	0.066 (4)	0.052 (4)	0.043 (4)		0.001 (3)	-0.004(3)	0.00	8 (3)
C13	0.042 (3)	0.047 (3)	0.047 (4)		-0.001 (3)	-0.006 (3)	0.00	3 (3)
						()		
Geometric param	neters (Å, °)							
Br1—C4		1.897 (6)		C4—C5			1.389 (8)	
Br2—C5		1.907 (5)		С6—Н6А	A		0.9600	
O1—C9		1.354 (7)		C6—H6I	В		0.9600	
O1—H1		0.8200	(С6—Н60	3		0.9600	
N1—C7		1.369 (7)	(С7—С8			1.442 (8)	
N1-C1		1.382 (7)	(C8—C13	3		1.402 (8)	
N1—H1A		0.9504	(С8—С9			1.408 (8)	
N2—C7		1.338 (7)	(C9—C10)		1.388 (8)	
N2—C2		1.398 (7)	(C10—C1	1		1.392 (9)	
N3—C1		1.370 (7)		С10—Н1	10		0.9300	
N3—C5		1.387 (8)		C11—C1	2		1.358 (9)	
C1—C2		1.415 (7)	(С11—Н1	11		0.9300	
C2—C3		1.394 (8)	(C12—C1	13		1.355 (8)	
C3—C4		1.396 (8)		С12—Н1	12		0.9300	
C3—C6		1.589 (9)	(С13—Н1	13		0.9300	
$Cg1 \cdots Cg2^i$		3.760 (3)	(Cg1…Cg	3 ⁱⁱ		3.723 (3)	
C9—O1—H1		109.5		C3—C6-	—Н6С		109.5	
C7—N1—C1		107.9 (4)	1	Н6А—С	6—H6C		109.5	
C7—N1—H1A		131.3]	Н6В—С	6—H6C		109.5	
C1—N1—H1A		120.8	1	N2—C7-	—N1		111.7 (5)	
C7—N2—C2		105.9 (4)	1	N2—C7-	C8		123.6 (5)	
C1—N3—C5		115.6 (5)	1	N1-C7-	C8		124.7 (5)	
N3—C1—N1		131.4 (5)		C13—C8	3—С9		118.1 (5)	
N3—C1—C2		123.1 (5)		C13—C8	3—С7		122.4 (5)	
N1—C1—C2		105.6 (4)		C9—C8-	—C7		119.5 (5)	
C3—C2—N2		130.1 (5)	(O1—C9-	C10		119.1 (6)	
C3—C2—C1		121.0 (5)	(O1—C9-	C8		121.6 (5)	
N2—C2—C1		109.0 (5)		C10—C9	9—С8		119.3 (6)	
C2—C3—C4		115.5 (5)		C9—C10	D—C11		120.4 (6)	
C2—C3—C6		126.1 (5)		C9—C10)—H10		119.8	
C4—C3—C6		118.4 (5)	(C11—C1	0—H10		119.8	
C5—C4—C3		122.4 (5)		C12—C1	11—C10		120.0 (6)	
C5—C4—Br1		120.5 (4)		C12—C1	1—H11		120.0	
C3—C4—Br1		117.1 (4)		C10—C1	1—H11		120.0	
N3—C5—C4		122.5 (5)		C13—C1	2—C11		120.8 (6)	
N3—C5—Br2		115.9 (4)		C13—C1	12—H12		119.6	
C4—C5—Br2		121.6 (4)		C11—C1	2—H12		119.6	
С3—С6—Н6А		109.5		C12—C1	l3—C8		121.5 (5)	

С3—С6—Н6В	109.5	C12-C13-H13	119	9.3	
H6A—C6—H6B	109.5	C8—C13—H13		9.3	
Symmetry codes: (i) - <i>x</i> +1/2, <i>y</i> +1/2, <i>z</i> ; (ii) - <i>x</i> +1/2, <i>y</i> -1/2, <i>z</i> .					
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1A…O1 ⁱⁱⁱ	0.95	1.90	2.839 (6)	171	
O1—H1…N2	0.82	1.84	2.573 (6)	149	
Symmetry codes: (iii) $x+1/2$, y , $-z+3/2$.					

Fig. 1

